Mustang VS. Dynojet (GOOD READ!) - - Infiniti G35 & G37 Forum Discussion |
Show Your Support Become A Premier Member

    > >
  • Reload this Page >
    • Mustang VS. Dynojet (GOOD READ!)

Mustang VS. Dynojet (GOOD READ!)

Thread Tools Rate Thread
Old 06-14-2004, 08:09 PM
Registered User
Thread Starter
Join Date: Mar 2004
location: clrh2o, the wetcoast of FL
Posts: 340
Thanks: 0
Thanked 0 Times in 0 Posts
Mustang VS. Dynojet (GOOD READ!)

i didnt author this. It is a copy-paste done w/o prior consent or approval (from another's copy-paste efforts i found online)

this should help us all understand the difference b/w the two major dynos, and as to why there are considerable differences in their output readings.....

<blockquote><font class="small">In reply to:</font><hr>

"It's been said that a man with a watch always knows the correct time, but a man with two watches is never really sure. Unfortunately, there are no proverbs about a man with two knowing how much power his car really makes. In this article, we'll examine two popular chassis dynamometers and explain why each will give us a different rear-wheel horsepower for the same engine. We test both the Dynojet model 248 chassis dyno located at Strope's Speed Shop in Washington, Pennsylvania and the MD-250 Mustang chassis dyno located at Speed Nation in McDonald, Pennsylvania. We also performed testing at Keystone Raceway in New Alexandria, Pennsylvania, using a dyno system
from West Automotive Performance Engineering.

The Dynojet chassis dyno is referred to as an inertia-type dynamometer, because large drums provide an inertial load to the drivetrain instead of a friction brake. The working end of the Dynojet includes two 48-inch diameter drums that are mostly below the surface and driven by the vehicle's drive wheels. In the photos of the Dynojet, notice how the rear wheels are centered on the drums and there is one drum per wheel. This will become important later.
The vehicle is typically run in the transmission gear closest to 1:1 (Forth gear for manuals and Third gear for automatics) to or a variable load that maintains a preset engine rpm or vehicle speed. This feature is ideal for forcing the vehicle to operate at certain loads for tuning. The Dynojet can also measure air/fuel ratio while testing.

The Mustang chassis dyno uses an Inertia load as well as an eddycurrent brake load to simulate the "actual" load (combined aerodynamic plus rolling frictional load) that the vehicle would experience when in motion. Notice in the photos how the rear wheels sit between two smaller 10.7-inch diameter rollers. There has been some discussion about the tires getting "pinched" between the rollers and creating more rolling friction, but no substantial evidence of this could be found. However, Mustang has a dyno (MD-1750) with a single 50-inch diameter roller per wheel that alleviates the wheel-pinch concerns. The internals of the Mustang dyno are composed of an eddy current brake to provide a variable load and an inertial disc to provide a fixed load. Mustang claims because its dyno loads the vehicle as it would be on the road, you can perform 0-60 mph, 0-100 mph, and quarter-mile measurements on its chassis dyno. Speed Nation has obtained quarter mile times within 0.1 second of actual runs at the track. We're not sure how the launch dynamics are simulated on the Mustang dyno, which
includes weight transfer, acceleration, jerk (the derivative of acceleration - how fast the acceleration occurs) and some other variables. The Mustang dyno can also measure the air/fuel ratio while testing.

CorrectIon Factors
Correction factors are used by both dynos to account for varying atmospheric conditions such as temperature, pressure, and humidity. The measured horsepower and torque are multiplied by the correction factor to obtain the corrected values. This is similar to the corrected times and speeds provided by some quarter mile tracks. Theoretically, you can dyno on a hot day in the high altitude of Denver and on some other cool day at sea level and produce the same corrected horsepower even though the observed horsepower you are producing at each location is different. Both dynos calculate a correction factor based on a Society of Automotive Engineering document (SAE-J1349). When testing was performed on the Dynojet, the correction factor was 1.10, which means the observed numbers were multiplied by 1.10 (adding 10 percent) to get the corrected values. The correction factor for the day when testing was performed on the Mustang dyno was 0.9595 (removing 4.05 percent). The correction factor when road-testing at
Keystone Raceway was 0.962, a correction reduction of 3.8 percent.

Testing was performed on each dyno using a '00 six-speed Z28 Camaro. We measured the horsepower and torque versus engine rpm in Second, Third, and Fourth gear. The test data also included how fast the engine accelerated in Second and Third gear (in rpm versus time) to be compared with actual road tests to assess each dyno's loading of the drivetrain. After each individual test we let the engine coolant temperature as displayed by our AutoTap OBD-II scanner to read between 200 and 205 degrees F for consistency. Dynojet sent out a representative to Strope's Speed Shop to verify calibration and witness testing. Calibration for the Dynojet is just a matter of verifying that the computer's configure file has the proper load-roller inertia factor. There are no manual calibrations for the Dynojet.
The road tests were pertorrned at Keystone Raceway to provide a level surface to measure the vehicle's rpm versus time in Second and Third gear using AutoTap. Chad Fellabaum of C&C Racing in Pennsylvania weighed the car so the exact weight could be used for the Mustang dyno loading to be compared with the road tests.
The dyno curve charts show horsepower and torque versus rpm in Third gears for both chassis dynos. You can also see that the Dynojet dyno measures a higher rear-wheel horsepower than the Mustang dyno.
The Dynojet measured 5.1 percent higher horsepower in Fourth gear, 7 percent higher horsepower in Third gear, and 8.2 percent higher horsepower in Second gear. We will try and explain this difference a little later.
Graphs 8 and 9 show the engine rpm versus time when the vehicle was loaded by the Dynojet dyno, Mustang dyno, and the actual road loading at Keystone Raceway in Third gear. You can see that the Mustang dyno loaded the car much closer to the actual loading in Second and Third gears.
Why Is loading the Vehicle Important?
The answer to this Question is twofold. First, the engine produces horsepower at the flywheel (brake horsepower) that is reported by the automobile manufacturers. Engine power is coupled to the rear wheels by a transmission and a rearend. But this is no free ride - there are losses in both the trans and the rearend. Therefore, the power to the rear wheels is equal to the flywheel horsepower minus the drivetrain power loss. The drivetrain losses are
mainly composed of three loss areas: friction loss, inertia loss, and viscous loss. The friction loss is largely due to the surfaces of the gear teeth rubbing against each other. Gear friction is related to the torque being transmitted through the drivetrain. The gear power loss is related to the speed at which the torque is being transmitted. This is why it is recommended to have a transmission cooler for towing. The transmission must couple more torque to pull the boat resulting in more frictional power loss, which shows up as more heat in the transmission to be taken away by the transmission cooler.
Inertial loss is related to the rotational acceleration (i.e., angular acceleration) of the drivetrain components. The inertial loss does not result in a power loss (i.e., heat) but absorbs energy that can be coupled to the rear wheels. This energy actually gets stored in the drivetrain components. The stored inertial energy in the flywheel keeps the revs up while the clutch is pressed in during shifts. The inertia loss is more pronounced in lower gears (i.e., First or Second) when the acceleration is highest. The viscous loss is basically the pumping of lubrication fluid in the transmission and the rearend. This is one reason why you get better e.t's when the
drivetrain is warm, because the oil is thinner and provides less "pumping loss." Therefore, to measure the actual rear-wheel horsepower, the drivetrain must be properly loaded to obtain the correct drivetrain loss. If the dyno provides a lower drivetrain load, then the drivetrain losses will be lower and the resulting rear-wheel horsepower will be higher.
The second reason why vehicle loading is important is that the newer computer-controlled vehicles use engine load as a control parameter. For example, ignition timing is a function of engine load. You will see higher timing advance when revving the engine in Neutral than you will when the vehicle is fully loaded at wide-open throttle in Third gear. This engine loading factor (and airflow dynamics, which is beyond the scope of this article) can help explain why some people have dyno'd identical to a friend's engine on a Dynojet dyno but got different results on a Mustang dyno.
Which Dyno Measures the Actual Rear-Wheel Horsepower?
West Automotive Performance Engineering has developed a proprietary device that independently measures a vehicle's actual speed and acceleration. This device is similar in operation to a fifth wheel but doesn't use accelerometers that can be influenced by the vehicle's body tilt. Using the vehicle's speed, acceleration, and weight (mass) and the application of simple physics equations, the exact horsepower and torque can be calculated. The horsepower and torque measured by West Automotive Performance Engineering's dyno is actually the horsepower made-good, or the horsepower left over to accelerate the vehicle after all the aerodynamic and rolling-friction losses have been overcome. These losses were accounted for and included West Automotive Performance Engineering's dyno so that a comparison with a chassis dynamometer can be made. The Mustang dyno includes the aerodynamic load that it places on the drivetrain as part of its reported rear-wheel horsepower and torque. Stated another way, the Mustang dyno does not measure the horsepower made-good.
Graphs 7 and 10 show the horsepower and torque versus rpm in Second and Third gear, respectively, for the Dynojet dyno, the Mustang dyno, and from road testing with the dyno from West Automotive Performance Engineering. You can see that the horsepower and the torque, as measured on the road, are closer to the Mustang dyno measurements. Also from the acceleration tests you can see how the Mustang dyno loads the vehicle very closely to how it will be actually loaded on the road. Based on our test data, the Mustang dyno loaded our test vehicle and measured the rearwheel horsepower closer to what the vehicle experiences on the road.


The Test Results table summarizes the testing that we performed. Keep in mind that the peak numbers are influenced by the amount of smoothing or averaging done to the final data. For comparing dyno plots to determine losses or gains, don't focus on the peak values but take a visual average by comparing the before and after curves on the same graph. If you can't see a marked improvement on the dyno, you probably won't see a performance improvement on the street. Also, realize that both the Dynojet and Mustang chassis dynamometers are useful tools that have excellent repeatability. Both dynos measure the correct horsepower and torque for the load that they apply. Both dynos will show losses or gains from modifications. It is recommended that you pick a dyno for your baseline testing and stick with that dyno type and dyno location (and dyno operator) for subsequent testing. Always start at the same engine coolant temperatures before each run. Also, use an OBD-II diagnostic scanner like AutoTap (from B&B Electronics) to monitor your engine's operating parameters. This will provide the best indication of power improvements or losses. We like to monitor the engine-coolant temperature, timing advance, knock retard, pre-cat O2 voltage, and rpm. Monitoring the engine-coolant temperature lets you make sure your engine is at the same temperature before each run to produce the most consistent results. The timing advance and knock retard indicate if any detonation is occurring that results in reduced timing and lower horsepower. After doing some research, the pre-cat O2 voltage can provide a correlation to the air/fuel ratio even though the O2 sensors are not too reliable in this air/fuel ratio region.

The bottom line:

dyno numbers are for show, and track times are for the dough!

-author unknown



Old 06-15-2004, 12:44 AM
Registered User
Join Date: Mar 2004
location: Los Angeles, California
Posts: 529
Thanks: 0
Thanked 0 Times in 0 Posts
Re: Mustang VS. Dynojet (GOOD READ!)

That thing was soo friggin long I couldn't read the whole thing. Just like the first 2 things and the last line. Sorry but it's really really long.

Heeeeellllllloooooooooo people.......

2003.5 Black/Black 5AT Fully Loaded w/ Navi
Clear Corners / Injen CAI
Old 06-15-2004, 06:37 AM
neffster's Avatar
Registered User
Join Date: Feb 2004
Posts: 8,269
Thanks: 0
Thanked 0 Times in 0 Posts
Re: Mustang VS. Dynojet (GOOD READ!)

Well, I read the whole thing. I'd really love to see the graphs that the author keeps referring to. Where did you find this link, and could you post the original source?


301-bhp!!! ...and growing!
Old 02-02-2010, 06:41 PM
thescreensavers's Avatar
iTrader: (10)
Join Date: Apr 2009
location: Miami,FL
Posts: 9,751
Thanked 202 Times in 160 Posts
Bump for a good read
Old 02-04-2010, 12:23 AM
Registered User
iTrader: (4)
Join Date: Jan 2005
location: Bay Area, Ca
Posts: 961
Thanks: 0
Thanked 44 Times in 32 Posts
A little side note, not all dynojet are the same and there are newer models of the Dynojet that can load the car the same way a Mustang can. Check out their website.
Old 10-22-2010, 07:30 PM
FlyingMustache's Avatar
Registered User
iTrader: (1)
Join Date: Aug 2010
location: Socal
Posts: 230
Thanked 6 Times in 5 Posts
been trying to find the differences between the two. interesting read
Old 10-25-2010, 12:33 AM
Registered User
Join Date: May 2009
Posts: 471
Thanks: 0
Thanked 2 Times in 2 Posts
trap speeds are more impressive.

Related Topics
Thread Thread Starter Forum Replies Last Post
03 Sedan, Help with Starting Problem chinee G35 Sedan V35 2003-06 15 06-05-2017 03:29 AM
Projector retrofit on 06 g35 sedan Jusseth G35 Sedan V35 2003-06 14 07-17-2016 12:47 AM
Where to order Motordyne Plenum in Canada? deathsupport Canada 1 08-02-2015 11:13 AM
Stereo Repair / Driving without a stereo hdmark Audio, Video & Electronics 2 07-29-2015 08:32 PM
G35x 5AT clutch replacement socalg35x G35 Sedan V35 2003-06 1 07-28-2015 11:42 AM

approximate, chad, compared, correction, dyno, dynojet, factor, fellabaum, jet, maustang, mustagn, mustang, numbers, versus, vs
Thread Tools
Rate This Thread
Rate This Thread:

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off

All times are GMT -4. The time now is 11:25 PM.

Copyright ©2002 - 2017, All Rights Reserved. We are a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for us to earn fees by linking to and affiliated sites.
  • Ask a Question
    Get answers from community experts
Question Title:
Your question will be posted in:

Related pages

po304 engine codeeriksen infinitigforce performance chips reviewsheadliner suedeporter cable calgarysymptoms of a bad crank sensork&n air filter cleaninginfiniti g37 turbo kitresurface brakesyakima superjoe 3 bike rackautozone vallejo cab&m shifterair conditioner expansion valve replacement costguelph infinitiaverage car battery ampscostco nitrogenpro tuning lab comg35 torque converterprojector headlights retrofitvarrstoen comscion fr-s vs brzalpine w205centric posi quiet ceramic pads reviewgreddy ti-c catback exhaustoptima redtop 35ka t 240sxodb2 plugvs kf wheels for salekenwood radio problemsaftermarket spoilers11 99 foundation license plate framebest buy isimple2003 infiniti g35 navigation systemaftermarket steering wheel with cruise controlvsxx step lipvx 610g35 pop charger2003 g35 sedan mpghow to tint front windshield stripcallahan brakesaudiobahn 10 inch subsinfiniti g35 horsepowerboze rimssealed enclosure vs portedmxm4 vs mxv4how do i turn off the airbag lightgood mechanic calgarypioneer avh 4200dvdmemphis audio 500 watt ampclutch fluid changevdc off nissan xterraleather rejuvenator oilcar window tint laws californiaavh-p4300dvdauto couture supremegracenotes databasekoyo aluminum radiatorhow to fill license plate holestire rack road hazard claimkatana cr5mobil 1 vs royal purple oilinfiniti m35 radiatorprecision european motorwerksstance springsautozone hollywood flhow to install aftermarket oil pressure gaugebleed heaterlangka complete paint chip repair kitrotors warped costvq35de plenum spacerluk clutch kit reviewcaliper paint canadian tireautoexplosion2007 g35 sedan exhaustdiono radian rxt buy buy baby2002 saleen s281eclipse avn66002003 infiniti m45 sport